LIST OF PUBLICATIONS OF Dr. SAMIT GUHA
A. Number of US Patent Granted: 1 B. Number of Published Papers: 39
C. Total Citations: 1971 h-index: 18 i10-index: 26
D. Total Impact Factor: 218.63 E. Average Impact Factor : 6.25
US Patent Granted
Colorimetric and Fluorimetric Fluoride Sensing. Sourav Saha, Samit Guha, U.S. Patent No US8541240 B2. Issued date: Sep. 24, 2013. FSU Research Foundation, Inc., Tallahassee, FL.
LIST OF PUBLICATIONS IN INTERNATIONAL JOURNALS :
Independent Publications :
39. A Mitochondria Targeting, De Novo Designed, Aggregation-Induced Emission Probe for Selective Detection of Neurotoxic Amyloid-β Aggregates. T Bera, A Mondal, S Kar, A Mukherjee, S Banerjee, and Samit Guha*. J. Mater. Chem. B, 2024, doi: 10.1039/d4tb01337a.
38. Design of an Acidic pH-Activated NIR Fluorescent Convertible Rhodamine−Hemicyanine Probe-Peptide Conjugate for Living Cancer Cell Active Targeted Selective Tracking of Lysosomes. A Mukherjee, S Kar, S Das, T Bera, A Mondal, A Sengupta, and Samit Guha*. Chem.Eur. J. 2024, 30, e202402146.
37. Two-Dimensional Cu-Based MOF for Selective Staining of the Cellular Nucleus through Fluorescence Imaging and Selective Sorption of Dye Molecules in Aqueous Medium. S Hui, P C Saha, Samit Guha, and Partha Mahata*.
Inorganic Chemistry 2024, 63, 13439-13449.
36. Spectrofluorometric detection of mercury ions in aqueous medium and cellular milieu using MoS2 nanoflakes. P Maiti, S Das, J Panda, D Karmakar, A Pal, S Guha, A Sengupta, S Paul, Pabitra Kumar Paul*. Journal of Physics and Chemistry of Solids 2024, 184, 111680.
R. S. Das, D. Maiti, S. Kar, T. Bera, A. Mukherjee, P. C. Saha, A. Mondal and Samit Guha* J. Am. Chem. Soc. 2023, 145, 20451–20461
34. Live-Cell Mitochondrial Targeted NIR Fluorescent Covalent Labeling of Specific Proteins Using a Dual Localization Effect
P. C. Saha, R. S. Das, S. Das, N. Sepay, T. Chatterjee, A. Mukherjee, T. Bera, S. Kar, M. Bhattacharyya, A. Sengupta, Samit Guha* Bioconjugate Chem. 2023, 34, 1407–1417
Bioconjugate Chemistry Front Cover Page.
33. Acidic pH-Triggered Live-Cell Lysosome Specific Tracking, Ratiometric pH Sensing, and Multicolor Imaging by Visible to NIR Switchable Cy-7 Dyes.
A. Mukherjee, P. C. Saha, S. Kar, P. Guha, R. S. Das, T. Bera, Samit Guha*
ChemBioChem. 2023, 24, e202200641.
32. C-Terminal Lipidation of SARS-CoV-2 Fusion Peptide Reinstates Superior Membrane Fusion Catalytic Ability.
A. Sardar, T. Bera, S. K. Samal, N. Dewangan, M. Kamble, Samit Guha, P. K. Tarafdar*
Chem.Eur. J. 2023, 29, e2022030.
31. Construction of Red Fluorescent Dual Targeting Mechanically Interlocked Molecules for Live Cancer Cell Specific Lysosomal Staining and Multicolor Cellular Imaging.
R. S. Das, A. Mukherjee, S. Kar, T. Bera, S. Das, A. Sengupta and S. Guha*, Org. Lett. 2022, 24, 5907-5912.
30. Construction of Self-Assembling Lipopeptide-Based Benign Nanovesicles to Prevent Amyloid Fibril Formation and Reduce Cytotoxicity of GxxxGxxxGxxxG Motif.
T. Bera, P. C. Saha, T. Chatterjee, S. Kar, and Samit Guha* , Bioconjugate Chem. 2022, 33, 1201-1209.
29. Acidic pH-Activatable Visible to Near-Infrared Switchable Ratiometric Fluorescent Probe for Live-Cell Lysosome Targeted Imaging.
A. Mukherjee, P. C. Saha, R. S. Das, T. Bera, Samit Guha*, ACS Sensors. 2021, 6, 2141-2146.
28. Supramolecular Dipeptide-Based Near-Infrared Fluorescent Nanotubes for Cellular Mitochondria Targeted Imaging and Early Apoptosis.
P. C. Saha, T. Bera, T. Chatterjee, J. Samanta, A. Sengupta, M. Bhattacharyya, Samit Guha*
Bioconjugate Chem. 2021, 32, 833-841
27. Construction of Unsymmetrical Bis-Urea Macrocyclic Host for Neutral Molecule and Chloride Ion Binding.
B. Paul, A. Mukherjee, D. Bhuyan, Samit Guha*, J. Heterocycl. Chem. 2021, 58, 2033-2038.
26. Design and Synthesis of Near-Infrared Mechanically Interlocked Molecules for Specific Targeting of Mitochondria
R. S. Das, P. C. Saha, N. Sepay, A. Mukherjee, S. Chatterjee, Samit Guha*
Org. Lett. 2020, 22, 5839-5843
25. Supramolecular β‑Sheet Forming Peptide Conjugated with Near-Infrared Chromophore for Selective Targeting, Imaging, and Dysfunction of Mitochondria
P. C. Saha, R. S. Das, T. Chatterjee, M. Bhattacharyya, Samit Guha*
Bioconjugate Chem. 2020, 31, 1301–1306
24. Targeting and Imaging of Mitochondria Using Near-Infrared Cyanine Dye and Its Application to Multicolor Imaging
P. C. Saha, T. Chatterjee, R. Pattanayak, R. S. Das, A. Mukherjee, M. Bhattacharyya, Samit Guha*
ACS Omega 2019, 4, 14579−14588
23. Think Biology from Chemistry View Point
Samit Guha* Med. & Analy. Chem. Int. J. 2018, 2, 000128, DOI: 10.23880/macij-16000128.
Postdoctoral and PhD. Publications :
22. Croconaine Rotaxane for Acid Activated Photothermal Heating and Ratiometric
Photoacoustic Imaging of Acidic pH
Samit Guha, Gillian Karen Shaw, Trevor M. Mitcham, Richard R. Bouchard, Bradley D. Smith*
Chem. Commun.2016, 52, 120–123
21. Role of the Transmembrane Domain in SNARE Protein Mediated Membrane Fusion: Peptide Nucleic Acid/Peptide Model Systems.
Jan-Dirk Wehland, Antonina S. Lygina, Pawan Kumar, Samit Guha, Barbara E. Hubrich, Reinhard Jahn, Ulf Diederichsen*
Mol. Biosyst. 2016, 12, 2770–2776
20. Clean Photothermal Heating and Controlled Release From Near Infrared Dye Doped Nanoparticles Without Oxygen Photosensitization.
Samit Guha, Scott K. Shaw, Graeme T. Spence, Felicia M. Roland, Bradley D Smith*
Langmuir 2015, 31, 7826–7834
19. SNARE Protein Analog-Mediated Membrane Fusion.
Pawan Kumar, Samit Guha, Ulf Diederichsen*, J. Pept. Sci. 2015, 21, 621–629
18. Spatial Modulation Spectroscopy for Imaging and Quantitative Analysis of Single Dye-Doped Organic Nanoparticles Inside Cells.
Mary Sajini Devadas, Tuphan Devkota, Samit Guha, Scott K. Shaw, Bradley D Smith, Gregory V. Hartland*
Nanoscale 2015, 7, 9779–9785
17. Nucleobase Caged Peptide Nucleic Acids: PNA/PNA Duplex Destabilization and Light Triggered PNA/PNA Recognition.
Samit Guha, Julia Graf, Björn Göricke, Ulf Diederichsen*, J. Pept. Sci. 2013, 19, 415–422
16. Tunable Electronic Interactions between Anions and Perylenediimide.
Flynt S. Goodson, Dillip K. Panda, Shuvasree Ray, Atanu Mitra, Samit Guha, Sourav Saha*, Org. Biomol. Chem. 2013, 11, 4797–4803
15. Boundaries of Anion/Naphthalenediimide Interactions: From Anion–π Interactions to Anion-Induced Charge-Transfer and Electron-Transfer Phenomena.
Samit Guha, Flynt S. Goodson, Lucas J. Corson, Sourav Saha*, J. Am. Chem. Soc. 2012, 134, 13679–13691 (JACS cover page & JACS Spotlights August 2012, Issue 33) (Highlighted in ScienceDaily, FSU News)
14. Deciphering Anion–p-Acceptor Interactions and Detecting Fluoride Using a Naphthalenediimide-Based Pd(II) Coordination Polymer.
Samit Guha, Flynt S. Goodson, Ronald J. Clark, Sourav Saha*, CrystEngComm 2012, 14, 1213–1215.
(The top 10 most accessed papers from CrystEngComm online during January 2012)
Samit Guha, Flynt S. Goodson, Sovan Roy, Lucas J. Corson, Curtis A. Gravenmier, Sourav Saha*, J. Am. Chem. Soc. 2011, 133, 15256–15259
12. Fluoride Ion Sensing by an Anion−π Interaction.
Samit Guha, Sourav Saha*, J. Am. Chem. Soc. 2010, 132, 17674–17677.
(The top 20 downloaded articles from J. Am. Chem. Soc. during January 2011)
(Highlighted in the C&EN (Dec 6, 2010), JACSβ video abstract, ScienceDaily, Medical News TODAY, FSU News, Frost & Sullivan, R&D Magazine, The Engineer, FSU Radio)
11. Fluorescent Au@Ag Core–Shell Nanoparticles with Controlled Shell Thickness and HgII Sensing.
Samit Guha, Subhasish Roy, Arindam Banerjee*, Langmuir 2011, 27, 13198–13205.
(The top 20 most accessed papers from Langmuir online during November 2011)
10. Construction of Supramolecular Helices and Breaking the Helicity by Forming Supramolecular b-sheet structures Using Suitable Self-Assembling Pseudopeptide Building Blocks.
Samit Guha, Michael G. B. Drew, Arindam Banerjee*, Cryst. Growth Des. 2010, 10,
4716– 4721.
9. Self-Assembled Robust Dipeptide Nanotubes and Fabrication of Dipeptide-Capped Gold Nanoparticles on the Surface of these Nanotubes. Samit Guha, Arindam Banerjee*, Adv. Funct. Mater. 2009, 19, 1949–1961.
8. Size Tuning of Au Nanoparticles Formed by Electron Beam Irradiation of Au25 Quantum Clusters Anchored Within and Outside of Dipeptide Nanotubes.
P. Ramasamy,‡ Samit Guha,‡ E. S. Shibu, T. S. Sreeprasad, Soumabha Bag, Arindam Banerjee*, Thalappil Pradeep*, J. Mater. Chem. 2009, 19, 8456–8462.
‡ These two authors have contributed equally.
7. Water Soluble Synthetic Dieptide-Based Biodegradable Nanoporous Materials.
Samit Guha, Tushar Chakraborty, Arindam Banerjee*, Green Chem. 2009, 11, 1139–1145.
6. Solvent-Induced Dynamic Single-Crystal-to-Single-Crystal Transformation of a Synthetic Peptide-Based Cyclic Compound.
Samit Guha, Michael G. B. Drew, Arindam Banerjee*, CrystEngComm 2009, 11, 756–762.
(The top 10 most accessed papers from CrystEngComm online during May 2009)
5. Macroporous Materials from Self-Assembling Synthetic Cyclic Peptide-Based Compounds and Deposition of Dipeptide-Capped Gold Nanoparticles on the Surfaces. Samit Guha, Arindam Banerjee*, Macromol. Chem. Phys. 2009, 210, 1422–1432
4. Construction of Helical Nanofibers from Self-Assembling Pseudopeptide Building Blocks: Modulating the Handedness and Breaking the Helicity.
Samit Guha, Michael G. B. Drew, Arindam Banerjee*, Small 2008, 4, 1993–2005
3. Dipeptide Nanotubes, with N-Terminally Located ω-Amino Acid Residues, That are Stable Proteolytically, Thermally, and Over a Wide Range of pH.
Samit Guha, Michael G. B. Drew, Arindam Banerjee*, Chem. Mater. 2008, 20, 2282-2290
2. A New Molecular Scaffold for the Formation of Supramolecular Peptide Double Helices: The Crystallographic Insight.
Samit Guha, Michael G. B. Drew, Arindam Banerjee*, Org. Lett. 2007, 9, 1347-1350
1. Formation of a One-Dimensional Helical Alignment of Water Molecules Within a Water-Mediated Supramolecular Helix Using Molecular Self-Assembly of a Water-Soluble Short Pseudopeptide.
Samit Guha, Michael G. B. Drew, Arindam Banerjee*, Tetrahedron Lett. 2006, 47, 7951-7955